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Supplementary Material and Methods 

 

Our primary aim was to understand how the coronavirus disease 2019 (COVID-19) affects physiological parameters 

measured by a wearable device and, subsequently, whether these parameter changes could help in detecting a pre-

symptomatic infection. In particular, we investigated how heart rate (HR), respiratory rate (RR), heart rate variability 

(HRV), wrist-skin temperature (WST), and skin perfusion deviated from baseline measurements during four 

infection-related periods: the incubation period, the pre-symptomatic period, symptomatic infection period, and the 

recovery period. We categorized daily parameter measurements as occurring in the baseline period if the day (d) was 

more than 10 days prior to symptom onset (SO; i.e., d>SO-10). Relatedly, we defined the incubation period as SO-

10≤d<SO-2 and the pre-symptomatic period as SO-2≤d<SO. Because participants’ reported symptom duration 
varied, measurements fell into the symptomatic infection category if SO≤d≤SE. Finally, parameters collected after 

symptom end (SE) were classified as in the recovery period (i.e., d>SE).  

 

 

The Wearable Device and Physiological Parameter Specification 

 
The Ava Fertility Tracker (version 20; Ava AG, Switzerland) is an United States Food and Drug Administration 

(FDA) cleared and conformité européenne (CE) certified fertility aid bracelet that complies with international 

regulatory requirements and applicable standards.1,2 The wrist-worn tracker consists of three sensors: a temperature 

sensor; an accelerometer; and a photoplethysmograph (PPG).3 The Ava-bracelet saves data every 10 seconds and 

requires at least four hours of relatively uninterrupted sleep to record enough data for pre-processing and analysis. 

Upon waking, the user taps a button in the complementary smartphone app to initiate the previous night’s raw data 
transfer from the Ava-bracelet to the system’s backend database via Bluetooth Low Energy (BLE). The data then 

undergoes pre-processing according to proprietary manufacturer algorithms to remove potential artifacts, detect the 

user’s sleep stages, and identify nightly physiological parameters. In addition to the algorithm-derived fertility 

indication, the post-processing values for HR, WST, RR, sleep quantity, sleep quality, and HRV ratio are then sent 

back to the complementary app and displayed to the user. The device’s sensors responsible for recording the raw 
data are described in detail below as well as show in Figure S1. 

Built into the Ava-bracelet’s internal hardware, the accelerometer detects and records the wearer’s movement in 
three-dimensional space. A proprietary machine learning algorithm ingests nightly movement data to determine sleep 

stages. In addition to reporting the user’s duration of sleep in-app, it also assigns her a nightly sleep quality score 

consisting of the percentage of combined deep and Rapid Eye Movement (REM) sleep. Although other researchers 

have examined COVID-19’s impact on sleep using wearable devices with mixed or inconclusive results4–7, since 

sleep quality and quantity were not among our pre-defined primary objectives we did not analyse results from the 

accelerometer data.  

A temperature sensor constitutes the Ava-bracelet second sensor and provided data for evaluating COVID-19 related 

changes in wrist skin temperature (WST). Despite the device reading temperature at a distal point compared to core 

body temperature, recent research has demonstrated the Ava-bracelet’s ability to continuously measure temperature 
throughout the night results in more sensitive readings than oral point estimates and enables its machine learning 

algorithms to detect more ovulation-related changes in temperature.8 These findings suggest the medical grade 

device’s ability to sense fluctuations in WST related to an infection would similarly benefit from its repeated 

sampling over the course of sleep and may outperform an oral or forehead reading taken only once at point of care 

(POC). Limited evidence conducted early on during the COVID-19 pandemic attests to WST’s potential superior 
usage in detecting infection-based fluctuations; WST for 528 patients read by a noncontact infrared thermometer 

proved more stable and less prone to environmental factors (e.g., walking or bicycling to POC) than tympanic and 

forehead measurements in some contexts. Thus, given prior research on the Ava-bracelet’s measurement accuracy 
compared to oral temperature and on WST’s importance in triaging COVID-19 patients, we relied on the device’s 
temperature sensor to provide nightly WST readings for analysing how temperature changes across a symptomatic 

SARS-CoV-2 infection.   

A PPG comprises the Ava bracelet’s final sensor. The PPG sensor employs a light emitting diode (LED) current to 
send infrared light through the user’s skin to detect inter-beat intervals (IBIs). The light reflects off or is absorbed 

by the blood; how much light bounces back to the sensor can signal the wearer’s current cardiac rhythms.9 Based on 

the time cadence for variance in the reflected light, proprietary algorithms can determine the user’s HR, RR, 
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perfusion and IBI; in turn, the IBI can inform calculations for various metrics of HRV. While HR consists of the 

number of heart beats per minute, HRV describes the fluctuation in time intervals between consecutive heartbeats.10 

It can vary in both frequency- and time-domains, resulting in more than 20 possible metrics for quantifying the 

heart’s activity.10 Since examining all HRV metrics would have proven practically and statistically infeasible, we 

focused on two time- and one frequency-domain measurements. The first time-domain measure of HRV, the standard 

deviation of the NN interval (SDNN), quantifies sympathetic and parasympathetic nervous system activity in ms; it 

describes how much variability exists in the interval between normal sinus beats.10 A lower SDNN corresponds to 

impaired cardiac health10, with recent research offering conflicting evidence about SDNN’s changes in COVID-19 

patients. While some studies demonstrated an increase in SDNN among COVID-19 patients11, others have found 

changes in SDNN dependent upon disease severity.12 Regardless of the effect’s direction, we expected an individual 

suffering from COVID-19 would exhibit deviations from their baseline SDNN during an active infection and 

included it in our analyses. A second time-domain measurement of HRV, the root mean square of successive 

differences (RMSSD), examines the variability between normal heartbeats. Increased RMSSD has previously been 

shown to be associated with severe infection, including septic shock and COVID-19.11,13 Thus, we focused on 

RMSSD changes across the incubation, pre-symptomatic, symptomatic and recovery phases compared to 

participants’ baseline measurements in our analysis. The final HRV parameter we examined, the HRV ratio, 

constitutes a frequency-domain measurement; it indicates the ratio of HR oscillations in the low-frequency (LF; 

004-015 Hertz [Hz]) to those in the high-frequency (HF; 015-04 Hz) bands10,14. Patients with severe COVID-19 

infection have exhibited a higher HRV ratio than mildly infected participants12, leading us to examine this 

physiological parameter in our analyses.  

 

 

Data Processing and Multi-level Model Specification 

We performed all data processing and analysis using R (R Core Team, v36115) and Python (Python Software 

Foundation, v3616). In keeping with data cleaning practices described by the manufacturer in previous publications,3 

we excluded the first 90 and the last 30 minutes of data from each night a priori from our analysis; transitions from 

waking to sleeping and vice versa can result in greater variation in physiological parameters measured by the Ava-

bracelet, thereby leading to less stable readings. To further reduce artificial fluctuations in the data due to potential 

measurement error and consistent with best practices17, each physiological parameter underwent locally estimated 

scatterplot smoothing (LOESS) prior to analysis. 

Next, we ran a series of multi-level models with random intercepts and random slopes to determine differences in 

physiological parameters during the infection-related periods compared to baseline, accounting for the nesting of 

repeated measurements during an infection period and within an individual. Given our continuous criterion, we used 

the “lme” function with residual maximum likelihood estimation (REML) and Satterthwaite degrees of freedom in 
the open-source R packages “lme4”18, “lmerTest”19, and “optimx”20 to model our outcomes of interest. Four dummy-

coded variables were created, indicating to which infection period a given measurement belonged (1= Belonging to 

that Period, 0=Not belonging to that period). The reference baseline period measurements were encoded as 0 across 

all four dummy variables. Our reported results include the unstandardized regression coefficients for each effect. 

When multiple models were possible for the same parameter, we chose the model using the percentile of data (stable 

maxima) with the best fit; we determined best fit by comparing the two models using an analysis of variance 

(ANOVA) test and selecting the model with the significantly lower Akaike Information Criterion (AIC). In instances 

where the models were not significantly different from each other, we chose the model that included more data (e.g., 

the 99% percentile of data versus the 90th percentile).  

In an effort to provide some context for the magnitude of our significant effects, we report the intraclass correlation 

coefficient (ICC) for each of the null models associated with changes in physiological parameters over the course of 

a COVID-19 infection. The ICC indicates how much variance in an outcome occurs due to between group 

differences21–23; in the context of the current study, the ICC presents a picture of how a given physiological parameter 

varies due to participant-level characteristics versus the within-subject course of a COVID-19 infection. 

To ensure a family-wise alpha level less than or equal to 05, we implemented a Bonferroni correction for the seven 

total parameters we analyzed and evaluated effect significance using this new level of p=007. We adjusted how we 

defined marginal significance accordingly (i.e., 007≤p≤05). We used the Bonferroni-corrected significance level 

throughout the paper.  
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Supplementary Results 

 
The ICCs and random effects variance estimates for each of the seven multi-level models can be found in Table S1. 

In brief, most physiological parameters had high levels of variance which could be attributed to between participant 

differences rather than within subject changes due to COVID-19 infection.  

For most physiological parameters, observed variance in the outcome resulted largely from a participant’s own 
stability in readings over time. All cardiac parameters showed similar ICCs, ranging from 071 (RMSSD) to 077 

(SDNN); this means that, depending on the parameter, 71-77% of the variance in outcome was due to between 

participant differences. Regardless of infection phase, a given participant’s nightly cardiac measurements were more 
similar to one another than random chance. RR showed an even higher ICC; 88% of all observed variance in RR 

was attributable to between participant differences. A maximum of 22% of variance could be due to within 

participant changes. The multi-level model testing the effect of infection phase on nightly RR reveals only a 

significant difference between the symptomatic period and baseline (see Table 3); all other phases do not differ 

significantly from baseline, illustrating the lack of overall variability due to a COVID-19 infection and emphasizing 

RR’s stability over time within an individual participant. 

On the other end of the spectrum, only wrist skin temperature and perfusion had low ICC’s (001 and 005, 

respectively); said differently, a given participant’s perfusion or temperature measurements over time were not more 

similar to each other than would be expected from a random selection of that same parameter across all participants. 

As perfusion did not show phase-based changes in COVID-19 infection (see Table 3), it may be that another 

unaccounted for factor contributes to outcome measurements. Neither the participant’s own repeated measurements 
nor the disease trajectory appear to significantly influence a given night’s perfusion data. In contrast, since wrist skin 

temperature significantly differed from baseline across all other phases of a COVID-19 infection (see Table 3), it 

appears that the disease itself contributes more to a given night’s temperature readings than the stability in a 

participant’s own repeated measurements; almost all of the observed variance in nightly skin temperature occurs due 

to within participant differences (e.g., changes in their physiology over the course of the infection). Examining ICC 

values for each physiological parameter of interest provides greater context into the relative effect of potential phase-

based changes in outcome variables as well as the residual variance attributable to the participant themselves. 

 

 

Supplementary Tables and Figures 

 
Supplementary Table 1. Intraclass correlation coefficients (ICCs) calculated based on the variance estimates for 

random effects of the null models predicting each of the seven physiological parameters of interest. 

 

Predictors 
Between Participant 

Variance (SD) 

Variance of the 

Residuals (SD) 
ICC 

Wrist Skin Temperature 034 (059) 3565 (597) 001 

Heart Rate 4359 (660) 1353 (368) 076 

Heart Rate Variability (SDNN) 12164 (1103) 3608 (608) 077 

Heart Rate Variability (RMSSD) 8208 (906) 3379 (581) 071 

Heart Rate Variability Ratio 116 (108) 040 (063) 074 

Respiratory Rate 448 (212) 064 (080) 088 

Skin perfusion 38 e-05 (001) 675 e-04 (003) 005 
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Supplementary Figure 1. The Ava Fertility Tracker contains three sensors (temperature, accelerometer and 

photoplethysmograph) that measure wrist skin temperature, heart rate, respiratory rate, heart rate variability and 

skin perfusion simultaneously.  

 

 

 

Study protocol  

 
The study protocol can be downloaded here. 
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